Processing outcomes of the AFM probe-based machining approach with different feed directions

نویسندگان

  • Yanquan Geng
  • Yongda Yan
  • Emmanuel B. Brousseau
  • Bowen Yu
  • Shengnan Qu
  • Zhenjiang Hu
  • Xuesen Zhao
چکیده

We present experimental and theoretical results to describe and explain processing outcomes when producing nanochannels that are a few times wider than the atomic force microscope (AFM) probe using an AFM. This is achieved when AFM tip-based machining is performed with reciprocating motion of the tip of the AFM probe. In this case, different feed directions with respect to the orientation of the AFM probe can be used. The machining outputs of interest are the chip formation process, obtained machined quality, and variation in the achieved channel depth. A three-sided pyramidal diamond probe was used under load-controlled conditions. Three feed directions were first investigated in detail. The direction parallel to and towards the probe cantilever, which is defined as “edge forward”, was then chosen for further

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling the surface generation process during AFM probe-based machining: simulation and experimental validation

The controlled removal of material conducted with the tip of an atomic force microscope (AFM) probe is a technique that has started gaining increased attention in recent years within the micro and nano manufacturing research community. The attractive characteristics of this process are that it is relatively simple to implement and low-cost compared with vacuum-based lithography techniques for m...

متن کامل

Magnetic Abrasive Machining of Difficult-to-Cut Materials for Ultra-High-Speed Machining of AISI 304 Bars

This research proposes an optimized magnetic abrasive machining process that uses an ultra-high-speed system to perform precision machining on a workpiece. The system can process several microns of material, either for machining surface roughness or for machining a workpiece for a precise micro-diameter. The stainless steel workpieces have been machined using an ultra-high-speed magnetic abrasi...

متن کامل

Surface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects

The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...

متن کامل

In-Plane and out of Plane Free Vibration of U-Shaped AFM Probes Based on the Nonlocal Elasticity

Atomic force microscope (AFM) has been developed at first for topography imaging; in addition, it is used for characterization of mechanical properties. Most researches have been primarily focused on rectangular single-beam probes to make vibration models simple. Recently, the U-shaped AFM probe is employed to determine sample elastic properties and has been developed to heat samples locally. I...

متن کامل

Optimum Swept Angle Estimation based on the Specific Cutting Energy in Milling AISI 1045 Steel Alloy

Mechanical machining processes are common manufacturing strategies to re-shape materials to desired specification. The mechanistic approach has revealed the mechanics of the machining processes with various parameters determined. The aim of this work is to investigate the impact of swept angle optimization and their influence on the specific cutting energy in milling AISI 1045 steel alloy. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017